Mit Nanopartikel-Tandems gegen den Herzinfarkt

Wie lässt sich nach einem Herzinfarkt geschädigtes Gewebe am besten mit Ersatzmuskelzellen behandeln? Ein Forscherteam unter Leitung der Universität Bonn stellt nun an Mäusen ein innovatives Verfahren vor: Muskelersatzzellen, die die Funktion des geschädigten Gewebes übernehmen sollen, werden mit Magnetischen Nanopartikeln beladen. Diese Nanopartikel-beladenen Zellen werden dann in den geschädigten Herzmuskel gespritzt und von einem Magneten an Ort und Stelle gehalten, weshalb die Zellen besser anwachsen. Die Wissenschaftler weisen am Tiermodell nach, dass sich die Herzfunktion dadurch deutlich verbessert. Das Fachjournal „Biomaterials“ stellt vorab online die Ergebnisse vor, die Druckfassung erscheint demnächst.

Beim Herzinfarkt kommt es meist durch Gerinnsel zu anhaltenden Durchblutungsstörungen von Teilen des Herzmuskels, in der Folge sterben Herzmuskelzellen ab. Schon seit längerem wird versucht, das geschädigte Herzgewebe durch Ersatzzellen zu revitalisieren. „Allerdings werden die Zellen beim Injizieren zu einem Großteil wegen der Pumptätigkeit des schlagenden Herzens durch den Stichkanal wieder herausgedrückt“, sagt Prof. Dr. Wilhelm Röll von der Klinik für Herzchirurgie des Universitätsklinikums Bonn. Deshalb verbleiben nur wenige Ersatzzellen im Herzmuskel - und die Regeneration ist gering.

Mit einem interdisziplinären Team erprobte Prof. Röll einen innovativen Ansatz, wie die injizierten Ersatzzellen besser am gewünschten Ort verbleiben und dort im Herzgewebe anwachsen. Die Experimente wurden an Mäusen durchgeführt, die zuvor einen Herzinfarkt erlitten hatten. Um die aus fötalen Mausherzen oder Mausstammzellen gewonnenen Herzmuskel-Ersatzzellen besser verfolgen zu können, wurden sie mit einem Fluoreszenzfarbstoff versetzt. Diese leuchtenden Ersatzzellen wurden mit winzigen magnetischen Nanopartikel beladen und mit einer feinen Kanüle in das geschädigte Herzgewebe der Mäuse injiziert.
Im Magnetfeld bleiben die Nanopartikel-Ersatzzellen an Ort und Stelle
Bei einem Teil der so behandelten Nager sorgte ein Magnet im Abstand von wenigen Millimetern dafür, dass ein Großteil der Nanopartikel mit den Ersatzzellen am gewünschten Ort verblieben. „Ohne Magnet hafteten etwa ein Viertel der zugefügten Zellen im Herzgewebe, mit waren es rund 60 Prozent“, berichtet Dr. Annika Ottersbach, die während der Untersuchungen Doktorandin in Prof. Rölls Team war. Zehn Minuten unter dem Einfluss des Magnetfeldes reichten bereits aus, um einen erheblichen Anteil der Nanopartikel-beladenen Ersatzzellen am Zielort festzuhalten. Auch Tage nach dem Eingriff verblieben die injizierten Zellen und wuchsen allmählich an.

„Das ist erstaunlich, zumal das Infarktgewebe mangels Durchblutung relativ unterversorgt ist“, sagt Prof. Röll. Unter dem Einfluss des Magneten starben die Ersatzzellen nicht so häufig, wuchsen besser an und vermehrten sich stärker. Die Forscher untersuchten die Gründe für das bessere Wachstum: Es zeigte sich, dass diese implantierten Herzmuskelzellen dichter gepackt waren und durch den intensiveren Zell-Zell-Kontakt besser überleben konnten. Darüber hinaus war in diesen Ersatzzellen die Genaktivität vieler Überlebensfunktionen – wie etwa für die Zellatmung – höher als ohne Magnet.

Die Forscher wiesen auch nach, dass sich die Herzfunktion bei den mit Nanopartikel-Muskelzellen in Kombination mit Magnet behandelten Mäusen deutlich verbesserte. „Nach zwei Wochen hatten sieben Mal so viele Ersatzzellen überlebt und nach zwei Monaten vier Mal so viele wie mit der herkömmlichen Implantationstechnik“, berichtet Prof. Röll. Angesichts der Lebensspanne der Mäuse von maximal zwei Jahren sei dies eine erstaunlich dauerhafte Wirkung.

In der von der Deutschen Forschungsgemeinschaft geförderten Forschergruppe 917 „Nanoparticle-based targeting of gene- and cell-based therapies“ arbeiteten die unterschiedlichsten Disziplinen von der Medizin über die Physik und Ingenieurwissenschaft bis hin zur Biologie zusammen. „Dieser interdisziplinäre Ansatz erlaubte das ungewöhnlich breite Spektrum und die Tiefe der Untersuchungen“, sagt Prof. Röll. Die Wissenschaftler sind davon überzeugt, dass sich diese Technologie potenziell auch auf den Menschen übertragen lässt. Prof. Röll: „Bis zur möglichen klinischen Anwendung ist es aber noch ein langer Weg, der weitere intensive Forschung erfordert.“

Um die aus fötalen Mausherzen oder Mausstammzellen gewonnenen Herzmuskel-Ersatzzellen besser verfolgen zu können, wurden sie mit einem Fluoreszenzfarbstoff versetzt. Diese leuchtenden Ersatzzellen wurden mit winzigen magnetischen Nanopartikel beladen und mit einer feinen Kanüle in das geschädigte Herzgewebe der Mäuse injiziert.

Bei einem Teil der so behandelten Nager sorgte ein Magnet im Abstand von wenigen Millimetern dafür, dass ein Großteil der Nanopartikel mit den Ersatzzellen am gewünschten Ort verblieben. "Ohne Magnet hafteten etwa ein Viertel der zugefügten Zellen im Herzgewebe, mit waren es rund 60 Prozent", berichtet Dr. Annika Ottersbach, die während der Untersuchungen Doktorandin in Rölls Team war. Zehn Minuten unter dem Einfluss des Magnetfeldes reichten bereits aus, um einen erheblichen Anteil der Nanopartikel-beladenen Ersatzzellen am Zielort festzuhalten. Auch Tage nach dem Eingriff verblieben die injizierten Zellen und wuchsen allmählich an.

"Das ist erstaunlich, zumal das Infarktgewebe mangels Durchblutung relativ unterversorgt ist", sagt Röll. Unter dem Einfluss des Magneten starben die Ersatzzellen nicht so häufig, wuchsen besser an und vermehrten sich stärker. Die Forscher untersuchten die Gründe für das bessere Wachstum: Es zeigte sich, dass diese implantierten Herzmuskelzellen dichter gepackt waren und durch den intensiveren Zell-Zell-Kontakt besser überleben konnten. Darüber hinaus war in diesen Ersatzzellen die Genaktivität vieler Überlebensfunktionen – wie etwa für die Zellatmung – höher als ohne Magnet.

Die Forscher wiesen auch nach, dass sich die Herzfunktion bei den mit Nanopartikel-Muskelzellen in Kombination mit Magnet behandelten Mäusen deutlich verbesserte. "Nach zwei Wochen hatten sieben Mal so viele Ersatzzellen überlebt und nach zwei Monaten vier Mal so viele wie mit der herkömmlichen Implantationstechnik", berichtet Röll. Angesichts der Lebensspanne der Mäuse von maximal zwei Jahren sei dies eine erstaunlich dauerhafte Wirkung.

(Quelle: Rheinische Friedrich-Wilhelms-Universität Bonn)

Pressemitteilung
 
 

Neuigkeiten



Konferenz „SmartHealthData.NRW: Intelligente Systeme für eine personalisierte Medizin“
Nutzung von Gesundheitsdaten in intelligenten medizinischen Unterstützungssystemen ...mehr

HealthCare Innovation Week im Rheinland: Veranstaltungsserie in Köln und Düsseldorf
12. bis 16. Januar 2018 ...mehr

Health 4.0 – der Gesundheitskongress 2018
Dialog zwischen Wirtschaft, Politik und Gesundheitswesen, 16. und 17. Januar 2018 in Düsseldorf ...mehr

Seminar zu US-Exportkontrollbestimmungen & Compliance
Industrieclub Düsseldorf, 17. Januar 2018 ...mehr

CERES-Tagung: Mehr Daten für weniger Krankheit? Über den Wert von Informationen in der Medizin
30. Januar 2018 in Köln ...mehr

Artificial intelligence and robotics: Emerging technologies in medicine (ETIM 2018)
Essen, 16. und 17. Februar 2018 ...mehr

Medical Devices Meetings 2018
B2B-Plattform für die Medizintechnik-Industrie in Stuttgart, 07.+08. März 2018 ...mehr

MT-CONNECT und MedTech Summit 2018
Internationale Messe für Zulieferer- und Herstellungsbereiche der Medizintechnik, 11.+12. April 2017 ...mehr

PerMediCon 2018: Kongressmesse zur personalisierten Medizin
Schwerpunkt: Genomische Medizin, 18. und 19. April 2018 in Köln ...mehr


Förderwettbewerb "Forschungsinfrastrukturen" des Landes Nordrhein-Westfalen: Gewinner der 2. Runde stehen fest
Elf Projekte werden mit 51 Millionen Euro unterstützt ...mehr

Patienten­kommunikation braucht neue Wege
Evidenzbasierte Informationen müssen besser digital verbreitet werden ...mehr

Vergütung von Digital Health in der GKV – Orientierung schaffen, Beratung für Anbieter und Kostenträger verbessern
Projekt widmet sich dem Transfer von Digital-Health-Anwendungen in den Versorgungsalltag ...mehr

Platz Eins für Nordrhein-Westfalen mit 56 Sonderforschungsbereichen der Deutschen Forschungsgemeinschaft
Alle Neuanträge aus Nordrhein-Westfalen bewilligt – Universitäten Köln, Bonn und Münster besonders erfolgreich ...mehr

Deutscher Ethikrat mahnt besseren Schutz von Gesundheitsdaten an
Gewährleistung von Datensouveränität ist zwingende Notwendigkeit ...mehr

Literaturpreis aus der Stiftung der Familie Klee zur Förderung des wissenschaftlichen Nachwuchses
Bewerbungsschluss ist der 31. Januar 2018 ...mehr


Förderung von transnationalen Forschungsprojekten zu psychischen Störungen im Rahmen des ERA-NET NEURON
Einreichungsfrist: 08.03.2018 ...mehr

Förderung von transnationalen Forschungsprojekten für Nachwuchswissenschaftler im Rahmen des ERA-Netzes zu Herz-Kreislauf-Erkrankungen (ERA-NET CVD)
Einreichungsfrist: 15.03.2018 ...mehr

Förderung von transnationalen Forschungsprojekten zu seltenen Tumorerkrankungen im Rahmen des ERA-NET TRANSCAN
Einreichungsfrist: 06.02.2018 ...mehr

Förderung multinationaler Forschungsprojekte zur Gesundheits- und Sozialversorgung bei Neurodegenerativen Erkrankungen
Einreichungsfrist: 06.03.2018 ...mehr

Richtlinie zur Förderung von transferorientierter Versorgungsforschung – Forschung und Ergebnistransfer für eine bedarfsorientierte Rehabilitation
Abgabetermin: 19.04.2018 ...mehr

Förderung von Projekten zum Thema „Bildgeführte Diagnostik und Therapie – Neue Wege in der Intervention“
Einreichungsfrist: 30.03.2018 ...mehr

Förderung von Projekten zum Thema "Chronische Schmerzen – Innovative medizintechnische Lösungen zur Verbesserung von Prävention, Diagnostik und Therapie"
Einreichungsfrist: 28.02.2018 ...mehr

Förderung von Forschungsinitiativen auf dem Gebiet „Elektronik- und Sensorsysteme für neuartige Robotikanwendungen (SensoRob)“
Einreichungsfrist: 15.01.2018 ...mehr